Alkenes $$CH_3$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 Isobutylene (used in the production of synthetic rubber) α-Pinene (a major constituent of turpentine) Farnesene (present in the waxy coating found on apple skins) ## **Nomenclature** $$CH_2 = CH_2$$ $CH_3CH=CH_2$ IUPAC name: ethene IUPAC name: propene Common name: ethylene Common name: propylene 3-Methyl-1-butene (not 2-methyl-3-butene) 6-Bromo-3-propyl-1-hexene (longest chain that contains double bond is six carbons) $$\begin{array}{c} H \\ C = 5 \\ C = C \end{array}$$ $$\begin{array}{c} C + 2 \\ C + 3 \end{array}$$ $$\begin{array}{c} C + 3 \\ C + 3 \end{array}$$ $$\begin{array}{c} C + 3 \\ C + 3 \end{array}$$ $$\begin{array}{c} C + 3 \\ C + 3 \end{array}$$ 5-Methyl-4-hexen-1-ol (not 2-methyl-2-hexen-6-ol) # Alkenyl groups Z configuration Higher ranked substituents (Cl and Br) are on same side of double bond *E* configuration Higher ranked substituents (Cl and Br) are on opposite sides of double bond | | Example | |---|--| | mic number takes precedence over
ne (atomic number 35) outranks chlor-
umber 17). Methyl (C, atomic number 6)
rogen (atomic number 1). | The compound Higher Br CH ₃ Higher | | | Lower Cl H Lower | | | has the Z configuration. Higher ranked atoms (Br and C of CH_3) are on the same side of the double bond. | | atoms directly attached to the double
itical, compare the atoms attached with
the basis of their atomic numbers. Pre- | The compound Higher Br CH ₃ Lower | | • | C=C Lower Cl CH ₂ CH ₃ Higher | | -butyl outranks isopropyl, and isopropyl | has the E configuration. | | $(H_3)_3 > -CH(CH_3)_2 > -CH_2CH_3$
(C,C) > -C(C,C,H) > -C(C,H,H) | | | ard from the point of attachment, com-
atoms attached to a particular atom
eding further along the chain: | The compound Higher Br CH2CH2OH Lower | | –C(C,C,H)] outranks
—CH₂CH₂OH [—C(C,H,H)] | Lower Cl $CH(CH_3)_2$ Higher has the E configuration. | | | nas the E configuration. | | ring outward from the point of attach-
evaluate substituent atoms one by one,
oup. Since oxygen has a higher atomic
carbon, | The compound Higher Br CH₂OH Higher C=C | | C(O,H,H)] outranks | Lower Cl C(CH ₃) ₃ Lower | | $-C(CH_3)_3$ [$-C(C,C,C)$] | has the Z configuration. | | at is multiply bonded to another atom
to be replicated as a substituent on that | The compound Higher Br CH₂OH Lower | | s treated as if it were | C=C
Lower Cl CH=O Higher | | Streated as if it were $-C(O,O,H)$
CH=O [$-C(O,O,H)$] outranks $-CH_2OH$ | has the E configuration. | | | the (atomic number 35) outranks chlorumber 17). Methyl (C, atomic number 6) or ogen (atomic number 1). Atoms directly attached to the double tical, compare the atoms attached with the basis of their atomic numbers. Presermined at the first point of difference: A,H)] outranks methyl [—C(H,H,H)] -butyl outranks isopropyl, and isopropyl di: | Ethylene $$\mu = 0 D$$ $$\begin{array}{c} Chloroethene \\ \mu = 1.4\ D \end{array}$$ Propene $$\mu = 0.3 D$$ $$CH_3 \times C = C \times CI$$ trans-1-Chloropropene $$\mu = 1.7 \text{ D}$$ # Relative stability of alkenes Energy difference = 44 kJ/mol (10.5 kcal/mol) Energy difference = cis-2,2,5,5-Tetramethyl-3-hexene Less stable trans-2,2,5,5-Tetramethyl-3-hexene More stable #### **Cis-trans isomerization** $$H$$ $C=C$ H_3C CH cis -but-2-ene $$H_3C$$ H $C=C$ H CH_3 $trans$ -but-2-ene 39 kJ/mol (9.2 kcal/mol) H Η (Z)-Cyclooctene (cis-cyclooctene) More stable ## **Preparation of alkenes:** $$X \stackrel{\alpha}{-} \stackrel{|}{C} \stackrel{|}{-} \stackrel{|}{C} \stackrel{\beta}{-} Y \longrightarrow C \stackrel{|}{=} C \stackrel{|}{\subset} + X \stackrel{|}{-} Y$$ **Dehydrogention of alkanes:** $$CH_3CH_3 \xrightarrow{750^{\circ}C} CH_2 = CH_2 + H_2$$ Ethane Ethylene Hydrogen $$CH_3CH_2CH_3 \xrightarrow{750^{\circ}C} CH_3CH = CH_2 + H_2$$ Propane Propene Hydrogen **Dehydration of alcohols:** $$\begin{array}{c|c} H - C - C - OH \xrightarrow{H^+} C = C + H_2O \\ \hline Alcohol & Alkene & Water \end{array}$$ Dehydrohalogenation of alkyl halides: $$H - C - X \longrightarrow C = C + HX$$ Alkyl halide Alkene Hydrogen halide CH₃CH₂OH $$\xrightarrow{\text{H}_2\text{SO}_4}$$ CH₂=CH₂ + H₂O Ethyl alcohol Ethylene Water # **Dehydration of alcohols:** $$\begin{array}{c|c} H - C - C - OH \xrightarrow{H^+} C = C + H_2O \\ \\ Alcohol & Alkene & Water \end{array}$$ OH $$\xrightarrow{\text{H}_2\text{SO}_4}$$ + H_2O Cyclohexanol Cyclohexene (79–87%) Water $$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{H_{2}SO_{4}} CH_{3} \xrightarrow{H_{2}SO_{4}} CH_{2} + H_{2}O$$ $$OH \qquad H_{3}C$$ 2-Methyl-2-propanol 2-Methylpropene (82%) Water ### Regioselectivity-Syetzef rule OH $$CH_{3} \xrightarrow{2} \xrightarrow{3} \xrightarrow{4} \xrightarrow{4} \xrightarrow{H_{2}SO_{4}} CH_{2} \xrightarrow{CH_{2}CH_{3}} CH_{2} \xrightarrow{H_{3}C} C \xrightarrow{CH_{2}CH_{3}} + H_{3}C$$ $$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{H_{3}C} C \xrightarrow{CH_{2}CH_{3}} + H_{3}C$$ $$CH_{3} \xrightarrow{CH_{3}CH_{3}} CH_{3} \xrightarrow{H_{3}C} C \xrightarrow{CH_{2}CH_{3}} CH_{3} \xrightarrow{CH_{3}CH_{3}} C \xrightarrow{CH_{2}CH_{3}} CH_{3}$$ $$2-\text{Methyl-2-butanol} \qquad 2-\text{Methyl-1-butene} \qquad 2-\text{Methyl-2-butene} \qquad (90\%)$$ OH $$R_{2}CH \xrightarrow{\alpha} C \xrightarrow{\beta} CH_{2}R \xrightarrow{-H_{2}O} R_{2}C = C$$ $$CH_{3}$$ $$CH_{4}$$ $$\begin{array}{c} CH_{3} \\ OH \end{array} \xrightarrow[heat]{} CH_{3} \\ + \\ \\$$ (84%) (16%) $$CH_{3}CH_{2}CHCH_{2}CH_{3} \xrightarrow{H_{2}SO_{4} \atop heat} H_{3}C \xrightarrow{CH_{2}CH_{3}} H_{3}C \xrightarrow{H_{3}C} H$$ $$C=C \xrightarrow{H_{2}CH_{3}} + C=C \xrightarrow{H_{3}C} H$$ $$CH_{2}CH_{3} + H_{3}C \xrightarrow{CH_{2}CH_{3}} H$$ $$C=C \xrightarrow{H_{2}CH_{3}} + H_{3}C \xrightarrow{CH_{2}CH_{3}} H$$ $$CH_{2}CH_{3}$$ $$CH_{2}CH_{3} \xrightarrow{H_{3}C} H$$ $$CH_{3}CH_{3} ### **Mechanism** #### The overall reaction: $$(CH_3)_3COH \xrightarrow{H_2SO_4} (CH_3)_2C = CH_2 + H_2O$$ tert-Butyl alcohol 2-Methylpropene Water **Step** (1): Protonation of *tert*-butyl alcohol. tert-Butyl alcohol Hydronium ion tert-Butyloxonium ion Water **Step (2):** Dissociation of *tert*-butyloxonium ion. $$(CH_3)_3C \xrightarrow{f} O: \xrightarrow{slow} (CH_3)_3C^+ + O:$$ $$H$$ tert-Butyloxonium ion tert-Butyl cation Water **Step (3):** Deprotonation of *tert*-butyl cation $$CH_3 \qquad H \qquad CH_3 \qquad H$$ $$CH_2 - H + :O: \xrightarrow{fast} C = CH_2 + H - O:$$ $$CH_3 \qquad H \qquad CH_3 \qquad H$$ tert-Butyl cation Water 2-Methylpropene Hydronium ion ### Rearrangement 1,1,2-Trimethylpropyl cation (tertiary) # **Hydride** shift CH₃CH₂CH₂CH₂OH $$\xrightarrow{\text{H}_2\text{SO}_4}$$ CH₃CH₂CH=CH₂ + CH₃CH=CHCH₃ 1-Butene (12%) Mixture of *cis*-2-butene (32%) and *trans*-2-butene (56%) ## Dehydrohalogenation of alkyl halides $$H - C - C - X \longrightarrow C = C + HX$$ Alkyl halide Alkene Hydrogen halide Cyclohexyl chloride Cyclohexene (100%) $$CH_3(CH_2)_{15}CH_2CH_2$$ CI $CH_3(CH_3)_3$ $CH_3(CH_2)_{15}CH$ CH_2 1-Chlorooctadecane 1-Octadecene (86%) Bromocyclodecane $$CH_3CH_2OH$$ CH_3CH_2OH Cis -Cyclodecene 1. The reaction exhibits second-order kinetics; it is first-order in alkyl halide and first-order in base. Rate = $$k$$ [alkyl halide][base] 2. The rate of elimination depends on the halogen, the reactivity of alkyl halides increasing with decreasing strength of the carbon-halogen bond. Transition state for bimolecular elimination In the E2 mechanism the three key elements - 1. C—H bond breaking - 2. C=C π bond formation - 3. C—X bond breaking Gauche; orbitals not aligned for double bond formation Anti periplanar; orbitals aligned and bonds are staggered cis-4-tert-Butylcyclohexyl bromide Axial halide is in proper orientation for anti elimination with respect to axial hydrogens on adjacent carbon atoms. Dehydrobromination is rapid. trans-4-tert-Butylcyclohexyl bromide Equatorial halide is gauche to axial and equatorial hydrogens on adjacent carbon; cannot undergo anti elimination in this conformation. Dehydrobromination is slow. # Rate = k[alkyl halide] R_2CHX Increasing rate of elimination by the E1 mechanism RCH_2X < < R_3CX Primary alkyl halide slowest rate of E1 elimination Tertiary alkyl halide fastest rate of E1 elimination $$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 \\ \xrightarrow{-\text{H}_2\text{O}} \\ \text{H}_3\text{C} \\ \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 \\ \end{array} \xrightarrow{\text{CH}_3\text{CCH}_2\text{CH}_3} \\ \text{H}_3\text{C} \\ \text{H}_3\text{C} \\ \text{CH}_2\text{CH}_3 \\ \end{array} \xrightarrow{\text{CH}_3\text{CCH}_2\text{CH}_3} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 \\ \text{Er:} \\ \text{Er:} \\ \end{array}$$ $$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 \\ \text{Er:} \\ \end{array}$$ $$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 \\ \text{Er:} \\ \end{array}$$ $$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CCH}_2\text{CH}_3 #### The reaction: $$(CH_3)_2CCH_2CH_3 \xrightarrow[heat]{CH_3CH_2OH} CH_2 = CCH_2CH_3 + (CH_3)_2C = CHCH_3$$ $$CH_3$$ $$CH_3$$ 2-Bromo-2-methylbutane 2-Methyl-1-butene (25%) 2-Methyl-2-butene (75%) #### The mechanism: **Step** (1): Alkyl halide dissociates by heterolytic cleavage of carbon–halogen bond. (Ionization step) 2-Bromo-2-methylbutane 1,1-Dimethylpropyl cation Bromide ion Step (2): Ethanol acts as a base to remove a proton from the carbocation to give the alkene products. (Deprotonation step) Ethanol 1,1-Dimethylpropyl cation Ethyloxonium ion 2-Methyl-1-butene $$CH_{3}CH_{2}O: \begin{array}{c} H \\ CH_{3} \\ CH_{3}CH_{2}O: \end{array} \begin{array}{c} CH_{3} \\ CH_{3}CH_{2}O: \\ CH_{3} \end{array} \begin{array}{c} CH_{3}CH_{2}O: \\ CH_{3}CH_{2}O: \\ CH_{3} \end{array} \begin{array}{c} CH_{3}CH_{2}O: \\ CH_{3}CH_{2}O:$$ Ethanol 1,1-Dimethylpropyl cation Ethyloxonium ion 2-Methyl-2-butene