Alkanes

Hydrocarbons: 1. Aliphatic 2. Aromatic

Alkanes; Alkenes; Alkynes; Arenes

Benzene (arene)

Alkanes

They Contain: Hydrogen, Carbon; Single bond; SP³ Carbon; Least reactive compounds; No reactive functional groups; Saturated hydrocarbon; No electrophile; No neocleophile; C_nH_{2n+2} Structures.

Alkenes

They Contain: Hydrogen, Carbon; Double bond; SP² Carbon; Unsaturated hydrocarbon; C_nH_{2n} Structures.

• Alkynes

They Contain: Hydrogen, Carbon; Triple bond; SP Carbon; Unsaturated hydrocarbon; C_nH_{2n-2} Structures.

Cyclic hydrocarbons

They Contain: Hydrogen, Carbon; Single bond; SP³ Carbon; Cyclic structure; C_nH_{2n} Structures.

- The family of organic compounds
- Functional groups: R-Cl, R-CN, R-OH, R-CHO, R-NH₂, R-O-R, R-NO₂, R-SH
- Reactive sides of hydrocarbons

TABLE 2.1	Functional Groups in Some Important Classes of Organic Compounds		
Class	Generalized abbreviation	Representative example	Name of example*
Alcohol Alkyl halide Amine [†] Epoxide	$ROH RCI RNH_2 R_2C - CR_2 O$	$CH_{3}CH_{2}OH$ $CH_{3}CH_{2}CI$ $CH_{3}CH_{2}NH_{2}$ $H_{2}C-CH_{2}$ O	Ethanol Chloroethane Ethanamine Oxirane
Ether Nitrile Nitroalkane Thiol	ROR RC≡N RNO ₂ RSH	$\begin{array}{l} CH_3CH_2OCH_2CH_3\\ CH_3CH_2C \blacksquare N\\ CH_3CH_2NO_2\\ CH_3CH_2SH \end{array}$	Diethyl ether Propanenitrile Nitroethane Ethanethiol

*Most compounds have more than one acceptable name. [†]The example given is a *primary* amine (RNH₂). *Secondary* amines have the general structure R₂NH; *tertiary* amines are R₃N.

TABLE 2.2 Class	es of Compounds	That Contain a Carb	onyl Group
Class	Generalized abbreviation	Representative example	Name of example
	0	0	
Aldehyde	RCH O	CH₃CH O	Ethanal
Ketone	RCR	CH ₃ CCH ₃	2-Propanone
	O II	O II	
Carboxylic acid	RCOH	CH₃COH	Ethanoic acid
Carboxylic acid deriv	O	0	
Acyl halide	RCX	CH₃CCI	Ethanoyl chloride
	O O 	O O I	
Acid anhydride	RCOCR	CH ₃ COCCH ₃	Ethanoic anhydride
Ester	RCOR	CH ₃ COCH ₂ CH ₃	Ethyl ethanoate
	O II	O II	
Amide		CH ₃ CNH ₂	Ethanamide

Nomenclature

1. Common names; 2. The IUPAC names

Methane; Ethane; Propane

(a) Pentane: CH₃CH₂CH₂CH₂CH₃

(b) 2-Methylbutane: (CH₃)₂CHCH₂CH₃ (c) 2,2-Dimethylpropane: (CH₃)₄C

FIGURE 2.4 Space-filling models of (a) pentane, (b) 2-methylbutane, and (c) 2,2-dimethylpropane. The most branched isomer, 2,2-dimethylpropane, has the most compact, most spherical, three-dimensional shape.

Properties

Intermolecular forces (Induced dipole interaction)

Van der Waals forces (London forces)

Each additional –CH₂- group increases the boiling point by about 30 °C up to about ten carbons, and by about 20 °C in higher alkanes.

Solubility in water: Insoluble Hydrophobic (water hating) Alkane density: about 0.7 g/ml

ABLE 2.3 Molecular Formulas

Molecular formula	Number of constitutional isomers
CH₄	1
C_2H_6	1
$C_{3}H_{8}$	1
C_4H_{10}	2
C_5H_{12}	3
C_6H_{14}	5
C ₇ H ₁₆	9
C_8H_{18}	18
C_9H_{20}	35
$C_{10}H_{22}$	75
C15H32	4,347
C ₂₀ H ₄₂	366,319
C ₄₀ H ₈₂	62,491,178,805,831

TABLE 2.4	IUPAC Names of Unbranched Alkanes				
Number of carbon atoms	Name	Number of carbon atoms	Name	Number of carbon atoms	Name
1	Methane	11	Undecane	21	Henicosane
2	Ethane	12	Dodecane	22	Docosane
3	Propane	13	Tridecane	23	Tricosane
4	Butane	14	Tetradecane	24	Tetracosane
5	Pentane	15	Pentadecane	30	Triacontane
6	Hexane	16	Hexadecane	31	Hentriacontane
7	Heptane	17	Heptadecane	32	Dotriacontane
8	Octane	18	Octadecane	40	Tetracontane
9	Nonane	19	Nonadecane	50	Pentacontane
10	Decane	20	lcosane*	100	Hectane

*Spelled "eicosane" prior to 1979 version of IUPAC rules.

A homologous series: Series unbranched alkanes that differ only by the number of -CH₂- groups.

CH₃CH₂CH₂CH₂CH₂CH₂CH₃

IUPAC name: hexane (common name: *n*-hexane)

- 1. Longest continuous chain
- 2. Identify the substituent group
- 3. Give the lowest number to the substituent
- 4. Write the name of compound

Name the substituent groups attached to the longest chain as **alkyl groups.**

Alkyl groups: Methyl; Ethyl; n-Propyl CH₃-; CH₃-CH₂-; CH₃-CH₂-CH₂-

- When there are two longest chains of equal length, use the chain with the greater number of substituents as the main chain.
- The longest chain, beginning with the end of name the substituent groups attached to the longest the chain nearest a substituent.
- Give the location of each alkyl group by the number of the main-chain carbon atom to which it is attached.
- -CH₃ Methyl unit or group; -CH₂- Methylene group; -CH Methine group

4-ethyloctane

4-ethyl-3-methyloctane

Bond line formula

4-ethyl-3,5-dimethyloctane ¹⁶

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

2-Methylpropyl group (common name: isobutyl)

3

1,1-Dimethylethyl group (common name: *tert*-butyl)

(not 1-ethyl-3,3-dimethylcyclohexane, because first point of difference rule requires 1,1,3 substitution pattern rather than 1,3,3)

Distilation

FIGURE 2.2 Distillation of crude oil yields a series of volatile fractions having the names indicated, along wih a nonvolatile residue. The number of carbon atoms that characterize the hydrocarbons in each fraction is approximate.

Reactions

Cracking: Conversions of large alkane molecules to small alkane molecules.

Catalytic cracking $C_{5}H_{10}$ heat catalyst $C_{12}H_{26}$ long-chain alkane C7H16 shorter-chain alkanes and alkenes

20

Reforming: Conversion of alkanes to highly branched alkanes and aromatic compounds.

TABLE 3-3 Major Fractions Obtained from Distillation of Crude Petroleum				
Boiling Range (°C)	Number of Carbons	Fraction	Use	
under 30°	2–4	petroleum gas	LP gas for heating	
30°-180°	4–9	gasoline	motor fuel	
160°–230°	8–16	kerosene	heating, jet fuel	
200°-320°	10–18	diesel	motor fuel	
300°-450°	16–30	heavy oil	heating, lubrication	
$>300^{\circ}$ (vacuum)	>25	petroleum "jelly,"		
		paraffin "wax"		
residue	>35	asphalt		

Combustion

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O \qquad \Delta H^\circ = -890 \text{ kJ} (-212.8 \text{ kcal})$ Methane Oxygen Carbon Water $(CH_3)_2CHCH_2CH_3 + 8O_2 \longrightarrow 5CO_2 + 6H_2O \qquad \Delta H^\circ = -3529 \text{ kJ} (-843.4 \text{ kcal})$ 2-Methylbutane Oxygen Carbon Water dioxide

 $\Delta H^{o} = H^{o}_{Products} - H^{o}_{Reactants}$ $H^{o} = The heat content or Enthalpy$ $In exothermic reaction: \Delta H^{o} = - H^{o}_{Products} < H^{o}_{Reactants}$ $In endxothermic reaction: \Delta H^{o} = + H^{o}_{Products} > H^{o}_{Reactants}$

FIGURE 2.5 Energy diagram comparing heats of combustion of isomeric C₈H₁₈ alkanes.

Oxidation reactions:

 $\begin{array}{cccc} \mathrm{CH}_4 &+ & \mathrm{Cl}_2 &\longrightarrow & \mathrm{CH}_3\mathrm{Cl} &+ & \mathrm{H}\mathrm{Cl} \\ \end{array}$ Methane Chlorine Chloromethane Hydrogen chloride

Reduction:

 $CH_3Cl + 2Li \longrightarrow CH_3Li + LiCl$ Chloromethane Lithium Methyllithium Lithium chloride

$$\begin{array}{rcl} CH_3CH_3 \ + \ Cl_2 \ \longrightarrow CH_3CH_2Cl \ + \ & HCl \\ \\ Ethane & Chlorine & Chloroethane & Hydrogen chloride \end{array}$$

 $\begin{array}{cccc} R - H + & Cl_2 & \longrightarrow & R - Cl & + & HCl \\ \\ Alkane & Chlorine & Alkyl chloride & Hydrogen chloride \end{array}$